CST Review Practice Problems			onservation of Ma	atter & Stoichiom	etry Name	5	
1)	What kind of bonding	g is seen in th	ese atom pairings	s? Na +	- Cl Fe + Ag	H + N	O + Cl
2)	How many hydrogen	atoms are fo	und in each of the	e following compo	bunds? H_2O	NH_3	LiH
3)	Identify the name and number of each atom in the following compounds:						
	MgO	CaCl ₂	PCl ₃	H ₂ SO ₄	CuNO₃	K₃N	
4)	4) Write balanced ionic compound formulas in the pairings that follow:						
	Ba + Cl	Al + F	Cs + O	Mg + S			
5)	State the law of conservation of matter.						
6)	Balance the following	g:					
	$_Na(s) + _Cl_2(g) →$	NaCl(s)		Mg(s) +	$O_2(g) \rightarrow MgO($	s)	
	K(s) +H ₂ O(I) →	H ₂ (g) +K	OH(aq)	CH₄(g) +	$O_2(g) \rightarrow CO_2(g)$	g) +H ₂ O(§	g)
A mole is based upon the number of atoms found in exactly of the isotope							

8) Find the number of moles in each sample:

3.5 x 10 ²⁴ atoms	2.57 x 10 ²¹ molecules
7.447 x 10 ²³ ions	1.00 x 10 ²⁷ atoms

9) Complete the table below:

# of Moles	setup	# of Particles
4.57 mol Li		
		4.55×10^{25} molecules CO ₂
0.00500 mol Cu ²⁺		
$3.5 \times 10^4 \text{ mol F}_2$		
		1.50×10^{23} molecules Al ₂ O ₃

10) Both mass and moles tell you the _____ of a sample being measured.

11) Mass is an amount that is compared to a ______.

12) Moles and molecules are not compared, they are _____ units.

13) Molecular Weight (Molar Mass) allows us to _____ by weighing.

14) Find the Molar Masses of the following: Na F_2 H_2O MgS CO_2 H_2SO_4 NO_3

15) To find the number of moles in a 10g sample of LiCl, you first must find the ______.

16) To find the number of grams in a 3.50 mole sample of H₂, you first must find the ______.

17) Complete the table below:

Starting Amount & Unit	Conversion Factor	Ending Amount & Unit
10.00 mol Ca		
35 g NH ₃		
0.250 mol C ₂ H ₆		
450. g PCl ₃		
6 x 10 ² g FePO ₄		

18) 1 mole of any gas occupies a volume of _____ L under standard conditions.

19) Standard temperature and pressure are abbreviated as ______.

20) STP values in °C and atm are <u>&</u>, respectively.

21) To find a mole ratio you must start with a ______.

22) A mole ratio compares ______ of two substances in a chemical reaction.

23) Mole ratios are conversion factors, meaning you can use them to ______

24) Determine the ratios below using the following reaction:

 $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$

a) C_3H_8 to CO_2 b) CO_2 to H_2O c) O_2 to C_3H_8 d) H_2O to O_2

25) Convert using the following reaction: $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$

a) 3.00 mol C_3H_8 will produce _____ mol CO_2 ?

b) 8.0 mol H_2O are formed from _____ mol C_3H_8 ?

c) How many moles of O_2 are required to completely react with 0.500 moles of C_3H_8 ?

d) 3.00 moles of C_3H_8 will form how many grams of H_2O ?

e) How many grams of O_2 are required to form 9.0 moles of CO_2 ?