1) What kind of bonding is seen in these atom pairings? $\quad \mathrm{Na}+\mathrm{Cl} \quad \mathrm{Fe}+\mathrm{Ag} \quad \mathrm{H}+\mathrm{N} \quad \mathrm{O}+\mathrm{Cl}$
2) How many hydrogen atoms are found in each of the following compounds? $\quad \mathrm{H}_{2} \mathrm{O} \quad \mathrm{NH}_{3} \quad \mathrm{LiH}$
3) Identify the name and number of each atom in the following compounds:
MgO
CaCl_{2}
PCl_{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
CuNO_{3}
$\mathrm{K}_{3} \mathrm{~N}$
4) Write balanced ionic compound formulas in the pairings that follow:

$$
\mathrm{Ba}+\mathrm{Cl} \quad \mathrm{Al}+\mathrm{F} \quad \mathrm{Cs}+\mathrm{O} \quad \mathrm{Mg}+\mathrm{S}
$$

5) State the law of conservation of matter.
6) Balance the following:
\qquad
$\ldots \mathrm{Na}(\mathrm{s})+\ldots \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$ _ $\mathrm{NaCl}(\mathrm{s})$

$$
\ldots \mathrm{Mg}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{MgO}(\mathrm{~s})
$$

$$
\ldots \mathrm{K}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \ldots \mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{KOH}(\mathrm{aq})
$$

$$
\ldots \mathrm{CH}_{4}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

7) A mole is based upon the number of atoms found in exactly \qquad of the isotope \qquad .
8) Find the number of moles in each sample:
3.5×10^{24} atoms
2.57×10^{21} molecules
7.447×10^{23} ions
1.00×10^{27} atoms
9) Complete the table below:
\# of Moles \quad setup \quad \# of Particles
4.57 mol Li
4.55×10^{25} molecules CO_{2}
$0.00500 \mathrm{~mol} \mathrm{Cu}^{2+}$
$3.5 \times 10^{4} \mathrm{~mol} \mathrm{~F}_{2}$
1.50×10^{23} molecules $\mathrm{Al}_{2} \mathrm{O}_{3}$
10) Both mass and moles tell you the \qquad of a sample being measured.
11) Mass is an amount that is compared to a \qquad .
12) Moles and molecules are not compared, they are \qquad units.
13) Molecular Weight (Molar Mass) allows us to \qquad by weighing.
14) Find the Molar Masses of the following: $\quad \mathrm{Na} \quad \begin{array}{llllllllllllllll} & \mathrm{F}_{2} & \mathrm{H}_{2} \mathrm{O} & \mathrm{MgS} & \mathrm{CO}_{2} & \mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{NO}_{3}\end{array}$
15) To find the number of moles in a 10 g sample of LiCl , you first must find the \qquad .
16) To find the number of grams in a 3.50 mole sample of H_{2}, you first must find the \qquad .
17) Complete the table below:

Starting Amount \& Unit	Conversion Factor	Ending Amount \& Unit
10.00 mol Ca		
$35 \mathrm{~g} \mathrm{NH}_{3}$		
$0.250 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}$		
$450 . \mathrm{g} \mathrm{PCl}_{3}$		
$6 \times 10^{2} \mathrm{~g} \mathrm{FePO}_{4}$		

18) 1 mole of any gas occupies a volume of \qquad L under standard conditions.
19) Standard temperature and pressure are abbreviated as \qquad .
20) STP values in ${ }^{\circ} \mathrm{C}$ and atm are \qquad \& \qquad , respectively.
21) To find a mole ratio you must start with a \qquad .
22) A mole ratio compares \qquad of two substances in a chemical reaction.
23) Mole ratios are conversion factors, meaning you can use them to \qquad .
24) Determine the ratios below using the following reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) $\mathrm{C}_{3} \mathrm{H}_{8}$ to CO_{2}
b) CO_{2} to $\mathrm{H}_{2} \mathrm{O}$
c) O_{2} to $\mathrm{C}_{3} \mathrm{H}_{8}$
d) $\mathrm{H}_{2} \mathrm{O}$ to O_{2}
25) Convert using the following reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) $3.00 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$ will produce \qquad mol CO ${ }_{2}$?
b) $8.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ are formed from \qquad $\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{8}$?
c) How many moles of O_{2} are required to completely react with 0.500 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$?
d) 3.00 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ will form how many grams of $\mathrm{H}_{2} \mathrm{O}$?
e) How many grams of O_{2} are required to form 9.0 moles of CO_{2} ?

